

Influence of Prior Covariance Structure on Inverse Estimates of CO2 Fluxes in Los Angeles Basin

Vineet Yadav
Jet Propulsion Laboratory, California Institute of Technology

JSM 2019 (Denver)

Layout of the presentation

- Formulation of atmospheric Inverse Models
- Criteria for assessing inverse models
- Choices that impact inverse models
- Types of prior covariance used in inverse models
- The phenomenon for which prior covariance needs to be defined
- Role of prior covariance in inverse output
- Case Studies:
 - Regional: North America
 - Urban: Los Angeles

Atmospheric Inversions: Components of (linear)

Statistical Model

Measurement Error Covariance

 \mathbf{E}_{R}

(1)

$$L_{\mathbf{s},\boldsymbol{\beta}} = \frac{1}{2} (\mathbf{z} - \mathbf{H}\mathbf{s})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{z} - \mathbf{H}\mathbf{s}) + \frac{1}{2} (\mathbf{s} - \mathbf{s}_p)^{\mathrm{T}} \mathbf{Q}^{-1} (\mathbf{s} - \mathbf{s}_p)$$

Transport Model

CO2 Emissions

Flavors of Atmospheric (linear) Inverse Models

Inverse Process

Bayesian

$$L_{\mathbf{s}} = \frac{1}{2} (\mathbf{z} - \mathbf{H}\mathbf{s})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{z} - \mathbf{H}\mathbf{s}) + \frac{1}{2} (\mathbf{s} - \mathbf{s}_{p})^{\mathrm{T}} \mathbf{Q}^{-1} (\mathbf{s} - \mathbf{s}_{p})$$
(2)

Geostatistical

$$L_{\mathbf{s},\boldsymbol{\beta}} = \frac{1}{2} (\mathbf{z} - \mathbf{H}\mathbf{s})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{z} - \mathbf{H}\mathbf{s}) + \frac{1}{2} (\mathbf{s} - \mathbf{X}\boldsymbol{\beta})^{\mathrm{T}} \mathbf{Q}^{-1} (\mathbf{s} - \mathbf{X}\boldsymbol{\beta})$$
(3)

Another Formulation

$$L_{\mathbf{s},\boldsymbol{\beta},\mathbf{u}} = (\mathbf{z} - \mathbf{H}\mathbf{s})^T \mathbf{R}^{-1} (\mathbf{z} - \mathbf{H}\mathbf{s}) + (\mathbf{s} - \mathbf{X}\boldsymbol{\beta} - \mathbf{M}\mathbf{u})^T \mathbf{Q}^{-1} (\mathbf{s} - \mathbf{X}\boldsymbol{\beta} - \mathbf{M}\mathbf{u}) + \mathbf{u}^T \mathbf{P}^{-1} \mathbf{u}$$
(4)

Criteria for assessing an inverse model (other than Uncertainty Reduction)

Correlation Coefficient and RMSE

$$corr(\mathbf{z}, \mathbf{H}\hat{\mathbf{s}})$$

$$RMSE = \sqrt{\frac{\mathbf{1}^{\mathrm{T}}(\mathbf{z} - \mathbf{H}\hat{\mathbf{s}})^{\circ 2}}{n}}$$

$$(6)$$

Hat Matrix and Cross Validation

$$\mathbf{h} = \mathbf{H}\mathbf{s}_{p} \left((\mathbf{H}\mathbf{s}_{p})^{T} (\mathbf{H}\mathbf{Q}\mathbf{H}^{T} + \mathbf{R})^{-1} \mathbf{H}\mathbf{s}_{p} \right)^{-1} (\mathbf{H}\mathbf{s}_{p})^{T} (\mathbf{H}\mathbf{Q}\mathbf{H}^{T} + \mathbf{R})^{-1}$$
(7)

$$cv = \frac{1}{n} \sum_{i=1}^{N} \left(\frac{e_i}{1 - h_{ii}} \right)^2 \tag{8}$$

Averaging Kernel Matrix

$$\mathbf{G} = \mathbf{Q}\mathbf{H}^{T} (\mathbf{H}\mathbf{Q}\mathbf{H}^{T} + \mathbf{R})^{-1}\mathbf{H}$$

$$\tag{9}$$

Reduced Chi-Square Statistic

$$\frac{\chi_{red}^2}{\chi_{red}^2} = \frac{(\mathbf{z} - \mathbf{H}\hat{\mathbf{s}})^T \mathbf{R}^{-1} (\mathbf{z} - \mathbf{H}\hat{\mathbf{s}}) + (\mathbf{s} - \mathbf{s}_p)^T \mathbf{Q}^{-1} (\mathbf{s} - \mathbf{s}_p)}{n}$$
(10)

Criteria for assessing an inverse model: Examples

Correlation and RMSE

Averaging Kernel

Sensitivity Analysis

- How to determine which factor played most important role in influencing estimates of fluxes?
- There are multiple ways to do this but partial derivatives provide a complete framework to do this.

$$\mathbf{\Psi} = \left(\mathbf{H}\mathbf{Q}\mathbf{H}^{\mathrm{T}} + \mathbf{R}\right)$$

$$\frac{\partial \hat{\mathbf{s}}}{\partial \mathbf{z}} = \underbrace{\mathbf{Q} \mathbf{H}^T \mathbf{\Psi}^{-1}}_{Kalman \ Gain} \tag{11}$$

$$\frac{\partial \hat{\mathbf{s}}}{\partial \mathbf{Q}} = \mathbf{H}^T \mathbf{\Psi}^{-1} (\mathbf{z} - \mathbf{H} \mathbf{S}_{prior}) \otimes \mathbf{I}_k - \mathbf{H}^T \mathbf{\Psi}^{-1} (\mathbf{z} - \mathbf{H} \mathbf{S}_{prior}) \otimes \mathbf{H}^T \mathbf{\Psi}^{-1} \mathbf{H} \mathbf{Q}$$
(12)

$$\frac{\partial \hat{\mathbf{s}}}{\partial \mathbf{R}} = \mathbf{\Psi}^{-1} (\mathbf{z} - \mathbf{H} \mathbf{S}_{prior}) \otimes \mathbf{\Psi}^{-1} \mathbf{H} \mathbf{Q}$$
(13)

Normalized
Sensitivity
$$\Delta \hat{\vec{\mathbf{s}}} = \frac{\kappa_i^{\text{o}}}{\hat{\mathbf{s}}(\kappa^{\text{o}})} \times \left[\frac{\partial \hat{\mathbf{s}}}{\partial \kappa_i^{\text{o}}} \right]$$
(14)

Impact of Prior Covariance (North America Example)

Separable Exponential Space-Time

$$\mathbf{Q} = \sigma^2 \left[\exp\left(\frac{-\boldsymbol{d}_{temporal}}{l_{temporal}}\right) \otimes \exp\left(\frac{-\boldsymbol{d}_{spatial}}{l_{spatial}}\right) \right]$$
(10)

Spatially dependent error variance

$$\mathbf{Q} = \begin{pmatrix} a \begin{bmatrix} k_1 & 0 & 0 \\ 0 & . & 0 \\ 0 & 0 & k_r \end{bmatrix} + b \begin{bmatrix} 1 & 0 & 0 \\ 0 & . & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix}$$
(11)

Assessment: BIC

$$BIC = \underbrace{RSS + \ln|(\mathbf{HQH}^T + \mathbf{R})^{-1}|}_{log\ likelihood} + \underbrace{p\ln(n)}_{penalty\ term}$$
(12)

Impact of Prior Covariance (North America Example II)

Details of the Case Study:

- Inversion Area: North America
- Inversion Time Period: 2008
- Resolution: 3-Hourly, 1° x 1°
- Observations: 35 in-situ towers
- Simulation Study: True Fluxes were known
- Prior Covariance Assessed:
 - 1. Night Lights
 - 2. Population Density
 - 3. Urban Area
 - 4. FF Inventory
 - 5. Separable Exponential Covariance

- A. Study Area and In-Situ Towers
- B. Flux Aggregation Area
- C. Results from the case study

Results:

 FF Inventory based covariance considerably better than other covariance structures

Yadav et. al. (JGR-Atmospheres 2016)

Impact of Prior Covariance (North America Example III)

Work in Progress: Estimating Fossil Fuel Emissions By Using Twitter Feeds

Observations to Fluxes: Why is prior covariance so important in urban areas (Example from Los Angeles)

Fossil Fuel CO2 Emissions (kilograms/hour)

Observations to Fluxes: Why is prior covariance so important in urban areas (Example from Los Angeles) II

Distribution of Methane Emitting Infrastructure

Hourly Carbon dioxide emissions from Los Angeles

Observations to Fluxes: Why is prior covariance so important in urban areas (Example from Los Angeles) III

Behavior of different covariance formulations

Details of the Case Study:

- Inversion Area: Los Angeles
- Inversion Time Period: 2015
- Resolution: 4-day, 3km
- Observations: 6 in-situ towers
- Real data Study:
- Prior Covariance Assessed:
 - 1. FF Inventory (diagonal)
 - 2. Separable Exponential Covariance
 - 3. Temporal correlation and diagonal spatial

Results

- Correlation length in Space is non present
- Correlation length is considerably larger in time

Conclusions and Future Steps

Implement proposed covariance structures for estimating fluxes

$$\mathbf{Q} = \sigma^2 \left[\exp\left(\frac{-\mathbf{d}_{temporal}}{l_{temporal}}\right) \otimes \left(a \begin{bmatrix} k_1 & 0 & 0 \\ 0 & . & 0 \\ 0 & 0 & k_r \end{bmatrix} + b \begin{bmatrix} 1 & 0 & 0 \\ 0 & . & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \right]$$
(13)

Include observations from multiple instruments

- Perform sensitivity analysis
- Use real time social media to better define temporal covariance model